2016년도 구조역학 특론 시험 안내

구조역학 특론의 시험문제를 아래의 문제 중에서 출제할 예정이며 매우 엄격히 평가할 예정이므로 반드시 풀어보고 응시할 것.

담당교수

1.
1) Determine the support reactions of the beam shown in Fig.

$$
\text { ANS : } \quad A_{y}=\frac{w_{0} L}{4} \quad B_{y}=\frac{w_{0} L}{4}
$$

2) Determine the shear(V) and moment(M) equations throughout the beam as functions of x.
$0<x<\frac{L}{3} \quad:$

$$
\begin{aligned}
& V=-\frac{1}{2} \frac{w_{0} x}{L} \cdot x=-\frac{w_{0} x^{2}}{2 L} \\
& M=-\frac{w_{0} x^{2}}{2 L} \cdot \frac{x}{3}=-\frac{w_{0} x^{3}}{6 L}
\end{aligned}
$$

ANS : $\quad V=-\frac{w_{0} x^{2}}{2 L}$
ANS : $\quad M=-\frac{w_{0} x^{3}}{6 L}$ $\frac{L}{3}<x<L \quad:$

ANS : $\quad V=\frac{w_{0} L}{4}-\frac{w_{0} x^{2}}{2 L}$

ANS : $\quad M=\frac{w_{0} L}{4}\left(x-\frac{L}{3}\right)-\frac{w_{0} x^{3}}{6 L}$
3) Draw the shear and moment diagram of the beam. Indicate the absolute maximum shear force ($\mathrm{V}_{\max }$) and the maximum bending moment ($\mathrm{M}_{\max }$) at the diagram.

$$
\begin{aligned}
& V_{x=\frac{L}{3}}=-\frac{w_{0}}{2 L}\left(\frac{L^{2}}{9}\right)=-\frac{w_{0} L}{18} \\
& V_{x=\frac{L}{3}}=-\frac{w_{0} L}{18}+\frac{w_{0} L}{4}=\frac{7 w_{0} L}{36} \\
& V=\frac{w_{0} L}{4}-\frac{w_{0} x^{2}}{2 L}=0 \quad \therefore x=0.707 L \\
& M_{\max }=\frac{w_{0} L}{4}\left(0.707 L-\frac{L}{3}\right)-\frac{w_{0}}{6 L}(0.707 L)^{3} \\
& \quad=0.0345 w_{0} L^{2}
\end{aligned}
$$

2.

1) Determine the support reactions of the beam shown in Fig.

$\cup+\sum M_{A}=0 ; \quad B_{y}(2)-10.0(1)=0 \quad B_{y}=5.00 k N$
$+\uparrow \sum F_{y}=0 ; \quad A_{y}-10.0+5.00=0 \quad A_{y}=5.00 \mathrm{kN}$
$\cup+\sum M_{C}=0 ; \quad 5.00(1)+10.0(0)-D_{y}(1)=0 \quad D_{y}=5.00 k N$
$+\uparrow \sum F_{y}=0 ; \quad C_{y}-5.00-5.00-10.0=0 \quad C_{y}=20.0 \mathrm{kN}$

$$
\underline{\text { ANS }: ~} A_{y}=5 k N \quad C_{y}=20 k N \quad D_{y}=5 k N
$$

2) Determine the shear(V) and moment(M) equations throughout the beam as functions of x.
$\underline{0<x<3 m}$

$$
\begin{aligned}
& V=5-5 x \\
& M=5 x-5 x \cdot \frac{x}{2}
\end{aligned}
$$

ANS : $V=-5 x+5$
ANS : $M=-\frac{5}{2} x^{2}+5 x$
$3 m<x<4 m:$

$$
\begin{aligned}
& V=5-5 x+20 \\
& M=5 x-5 x \cdot \frac{x}{2}+20(x-3)
\end{aligned}
$$

ANS : $V=-5 x+25$
ANS : $M=-\frac{5}{2} x^{2}+25 x-60$
3) Draw the shear and moment diagram of the beam. Indicate the absolute maximum shear force ($\mathrm{V}_{\max }$) and the maximum bending moment $\left(\mathrm{M}_{\max }\right)$ at the diagram.

3. The composite beam shown in Fig. is supported by a roller at A, by a hinge at B and by fixed support at C.

1) Determine the reaction force $A_{y}(k N)$ at point A and $C_{x}(k N), C_{y}(k N), M_{c}(k N-m)$ at point C.

Support Reactions: For member AB
$\rightarrow+\sum M_{B}=0 ; \quad 50(4 / 3)-A_{y}(4)=0 \quad A_{y}=16.67 k N$
$\xrightarrow{+} \sum F_{x}=0 ; \quad B_{x}=0$

$+\uparrow \sum F_{y}=0 ; \quad B_{y}+16.67-50=0 \quad B_{y}=33.33 k N$
$\sum F_{x}=0, \quad C_{x}=0$
$\sum F_{y}=0, C_{y}=15+33.3=48.3 k N$
$\sum M_{c}=0, M_{c}=15(1.5)+33.3(3)=122.5 k N \cdot m$

$$
\text { ANS : } A_{y}=16.7 \mathrm{kN}, \quad C_{x}=0 \mathrm{kN}, \quad C_{y}=48.3 \mathrm{kN}, \quad M_{c}=122.5 \mathrm{kN}-\mathrm{m}
$$

2) Determine the resultant internal loadings in the beam $N_{D}(k N), V_{D}(k N)$ and $M_{D}(k N-m)$ at the cross section through the point D.

$$
\begin{aligned}
& \xrightarrow{+} \sum F_{x}=0 ; \quad N_{D}=0 \\
& +\uparrow \sum F_{y}=0 ; \quad 16.67-12.5-V_{D}=0 \\
& V_{D}=4.17 k N \\
& \hookrightarrow+\sum M_{D}=0 ; \quad M_{D}+12.5\left(\frac{2}{3}\right)-16.67(2)=0 \\
& \quad M_{D}=25.17 k N \cdot m
\end{aligned}
$$

$$
\frac{1}{2}(12.5)(2)=12.5 k N
$$

ANS : $\mathrm{N}_{\mathrm{D}}=0 \mathrm{kN}, \quad \mathrm{V}_{0}=4.2 \mathrm{kN}, \quad \mathrm{M}_{\mathrm{D}}=25.2 \mathrm{kN}-\mathrm{m}$
3) Determine the resultant internal loadings in the beam $N_{E}(k N), V_{E}(k N)$ and $M_{E}(k N-m)$ at the cross section through the point E. Point E is just to the right of the 15 kN load.

Equations of Equilibrium: For point E

$$
\begin{array}{lll}
+\sum F_{x}=0 ; & N_{E}=0 & \\
+\uparrow \sum F_{y}=0 ; & -33.33-15-V_{E}=0 & V_{E}=-48.33 k N \\
\hookrightarrow+\sum M_{E}=0 ; & M_{E}+33.33(1.5)=0 & M_{E}=-50.00 \mathrm{kN} \cdot \mathrm{~m}
\end{array}
$$

4. The thin-walled tube is subjected to an axial force of 40 kN . If the tube elongates 3 mm and its circumference decreases 0.09 mm . The tube's material behaves elastically.
1) Determine the normal stress $\sigma_{a}(\mathrm{MPa})$ for an axial direction.
2) Determine the normal strain $\varepsilon_{a}\left(10^{-3} \mathrm{~mm} / \mathrm{mm}\right)$ for an axial direction.
3) Determine the modulus of elasticity E (GPa) of the material.
4) Determine the Poisson's ratio v of the material.

5) Determine the shear modulus G (GPa) of the material.
(1) $\sigma=\frac{P}{A}=\frac{40 \times 1000}{\pi\left(0.0125^{2}-0.01^{2}\right)}=226.35 \mathrm{MPa}$
(2) $\epsilon_{a}=\frac{\delta}{L}=\frac{3}{900}=3.3333 \times 10^{-3} \mathrm{~mm} / \mathrm{mm}$
(3) $E=\frac{\sigma}{\epsilon_{a}}=\frac{226.35}{3.3333 \times 10^{-3}}=67905 \mathrm{MPa}=67.9 \mathrm{GPa}$
(4) $r=2 \pi \times 12.5-0.09=78.4498 \mathrm{~mm}$

$$
\begin{aligned}
& \frac{78.4498}{2 \pi}=12.4857 \mathrm{~mm} \\
& \epsilon_{l a t}=\frac{r-r_{0}}{r_{0}}=\frac{12.4857-12.5}{12.5}=-1.144 \times 10^{-3} \\
& \nu=-\frac{\epsilon_{l a t}}{\epsilon_{a}}=-\frac{-1.144 \times 10^{-3}}{3.3333 \times 10^{-3}}=0.3432
\end{aligned}
$$

$$
(5) G=\frac{E}{2(1+\nu)}=\frac{67.91 \times 10^{9}}{2(1+0.3432)}=25.28 \times 10^{9}=25.3 G P a
$$

ANS : 1) $\left.\sigma_{a}=226 \mathrm{MPa}, ~ 2\right) \varepsilon_{a}=3.33\left(10^{-3}\right) \mathrm{mm} / \mathrm{mm}$, 3) $\left.\left.\mathrm{E}=67.9 \mathrm{GPa}, 4\right) \vee=0.344,5\right) \mathrm{G}=25.3 \mathrm{GPa}$
5.

1) Determine the centroid C from the bottom $y_{c}(m m)$ of the cross-sectional area for the T-beam shown in Fig.

$$
\begin{aligned}
\bar{y}=\frac{\sum \widetilde{y} A}{\sum A}= & \frac{[75 \mathrm{~mm}](150 \mathrm{~mm})(30 \mathrm{~mm})+[165 \mathrm{~mm}](30 \mathrm{~mm})(150 \mathrm{~mm})}{(150 \mathrm{~mm})(30 \mathrm{~mm})+(30 \mathrm{~mm})(150 \mathrm{~mm})} \\
& =120 \mathrm{~mm}
\end{aligned}
$$

2) Determine the moment of inertia $I_{x}\left(10^{6} \mathrm{~mm}^{4}\right)$ of the cross-sectional area of the T-beam shown in Fig. about the centroidal x axis.

$$
\begin{aligned}
I & =\sum\left(\bar{J}_{x^{\prime}}+A d_{y}^{2}\right) \\
& =\left[\frac{1}{12}(30 \mathrm{~mm})(150 \mathrm{~mm})^{3}+(30 \mathrm{~mm})(150 \mathrm{~mm})(120 \mathrm{~mm}-75 \mathrm{~mm})^{2}\right] \\
& +\left[\frac{1}{12}(150 \mathrm{~mm})(30 \mathrm{~mm})^{3}+(150 \mathrm{~mm})(30 \mathrm{~mm})(60 \mathrm{~mm}-15 \mathrm{~mm})^{2}\right] \\
& =27.0\left(10^{6}\right) \mathrm{mm}^{4}
\end{aligned}
$$

6. The rigid bar is supported by the pin connected rod CB that has a cross-sectional area of $500 \mathrm{~mm}^{2}$ and the Young's modulus of the rod CB is 200GPa.
1) Draw the free body diagram of the rigid bar $A B$ and determine the reaction force $A_{x}(k N)$ and $A_{y}(k N)$ at point A and the force acted in the rod $C B F_{B C}(k N)$.

ANS : $A_{x}=40 \mathrm{kN}, \quad \mathrm{A}_{\mathrm{y}}=60 \mathrm{kN}, \quad \mathrm{F}_{\mathrm{BC}}=50 \mathrm{kN}$
2) Determine the average normal stress of the rod $\mathrm{CB} \sigma_{\mathrm{CB}}$ (MPa).
$F_{B C} \cdot \frac{3}{5} \times 4-90 \times \frac{4}{3}=0, \therefore F_{B C}=50 K N=50,000 N$
$\sigma=\frac{N}{A}=\frac{P}{A}=\frac{50,000 \mathrm{~N}}{500 \mathrm{~mm}^{2}}=100 \mathrm{~N} / \mathrm{mm}^{2}=100 \mathrm{MPa}=0.1 \mathrm{GPa}=10^{5} \mathrm{KPa}=10^{8} \mathrm{~Pa}$
\qquad
3) Determine the average shear stress in the 20 mm -diameter pin at $A \tau_{A}$ (MPa) which is subjected to double shear.

$$
\tau=\frac{V}{A}=\frac{\sqrt{40^{2}+60^{2}}}{2 A}=\frac{72,110 N}{200 \pi m m^{2}}=\frac{721.1}{2 \pi} M P a=115 M P a
$$

$$
\text { ANS : } \tau_{A}=115 \mathrm{MPa}
$$

4) Determine the relative displacement between two points C and B on the rod $\delta_{B C}(m m)$.
$\delta_{B C}=\frac{P L}{A E}=\frac{50,000 N \cdot 5,000 \mathrm{~mm}}{500 \mathrm{~mm}^{2} \cdot 200,000 \mathrm{MPa}}=2.5 \mathrm{~mm}$ or $\frac{50 \times 10^{3} \times 5}{0.5 \times 10^{-3} \times 200 \times 10^{9}}=2.5 \times 10^{-3} \mathrm{~m}=2.5 \mathrm{~mm}$
ANS : $\quad \delta_{B C}=2.5 \mathrm{~mm}$
5) Determine the vertical displacement of the bar at $B\left(\delta_{B}\right)_{V}(m m)$.

$$
\delta_{B B^{\prime}}=2.5 \times \frac{5}{3}=4.17 \mathrm{~mm}
$$

or

$$
\theta=\tan ^{-1}\left(\frac{3}{4}\right)=36.87^{\circ}
$$

$$
\delta_{B B^{\prime}}=\frac{\delta_{B C}}{\sin \theta}=\frac{2.5 \times 10^{-3}}{\sin 36.87^{\circ}}=4.167 \times 10^{-3} \mathrm{~m}=4.17 \mathrm{~mm}
$$

$$
\text { ANS : }\left(\delta_{B}\right)_{V}=4.17 \mathrm{~mm}
$$

7. A beam(E=200GPa, Cross-section is as shown.) is subjected to the load as shown.
1) Draw the shear and moment diagram of the beam. Indicate the absolute maximum shear force ($\mathrm{V}_{\max }$) and the maximum bending moment $\left(M_{\max }\right)$ at the diagram.

(b)
2) The crosses section of the beam is shown as fig. Determine the moment of inertia (I) and the maximum first moment $\left(Q_{\max }\right)$ of the crosssectional area about the centroidal $\mathrm{N}-\mathrm{A}$ axis.

Section Properties :

$$
\begin{aligned}
& I= {\left[\frac{1}{12}(250)(20)^{3}+(250)(20)(59.09-10)^{2}\right] } \\
&+2\left[\frac{1}{12}(15)(200)^{3}+(15)(200)(100-59.09)^{2}\right] \\
&= 42.26\left(10^{6}\right) \mathrm{mm}^{4} \\
& Q_{\max }=\overline{y^{\prime}} A^{\prime}=49.09(250)(20)+2(59.09 / 2)(59.09)(15) \\
& \quad=297.8\left(10^{3}\right) \mathrm{mm}^{3} \\
& O R \\
& Q_{\max }=\overline{y^{\prime}} A^{\prime}=(140.9 / 2)(30)(140.9)=297.8\left(10^{3}\right) \mathrm{mm}^{3} \\
& \text { ANS: } \mathrm{I}=42.26\left(10^{6}\right) \mathrm{mm}^{4}, \quad \mathrm{Q}_{\max }=297.8\left(10^{3}\right) \mathrm{mm}^{3}
\end{aligned}
$$

3) Determine the maximum bending stress ($\sigma_{\max }$) and the maximum shear stress ($\tau_{\max }$) in the beam.

$$
\begin{aligned}
& \sigma_{\max }=-\frac{M c}{I}=-\frac{\left(-7.50\left(10^{6}\right) \mathrm{N} \cdot \mathrm{~mm}\right)(-140.9 \mathrm{~mm})}{42.26\left(10^{6}\right) \mathrm{mm}^{4}}=-25.01 \mathrm{MPa} \\
& \tau_{\max }=\frac{V Q_{\max }}{I t}=\frac{10\left(10^{3}\right) N(297.8)\left(10^{3}\right) \mathrm{mm}^{3}}{42.26\left(10^{6}\right) \mathrm{mm}^{4}(30) \mathrm{mm}}=2.35 \mathrm{MPa}
\end{aligned}
$$

ANS: $\sigma_{\max }=-25.0 \mathrm{MPa}, \quad \tau_{\max }=2.3 \mathrm{MPa}$
8. A shaft delivers a maximum power of 28260 kW and causes the shaft to rotate at 1200 rpm . The outer diameter of the shaft is 340 mm and Inner diameter of the shaft is 260 mm .

1) Determine the internal torque (T) on the shaft.

$$
\begin{aligned}
& P=\frac{2 \pi n T}{60 \times 1000}=\frac{2 \pi n T}{60000}, \quad 28260 \mathrm{kw}=\frac{2 \pi(1200 \mathrm{rpm}) \mathrm{T}}{60000}, \\
& T=225 \mathrm{kN}-m=225\left(10^{6}\right) \mathrm{N}-\mathrm{mm}
\end{aligned}
$$

$$
\text { ANS: } \mathrm{T}=225 \mathrm{kN}-\mathrm{m}
$$

2) Determine the maximum shear $\operatorname{stress}\left(\tau_{\max }\right)$ developed in the shaft.

$$
\tau_{\max }=\frac{T c}{J}=\frac{225\left(10^{6}\right) 170}{\frac{\pi}{2}\left(170^{4}-130^{4}\right)}=44.3 \mathrm{MPa}
$$

$$
\text { ANS: } \tau_{\max }=44.3 \mathrm{MPa}
$$

3) Determine the angle of $\operatorname{twist(~} \Phi$, rad) of the shaft when the length of the shaft is 60 m . $(\mathrm{G}=75 \mathrm{GPa})$

$$
\phi=\frac{T L}{G J}=\frac{225\left(10^{6}\right) 60\left(10^{3}\right)}{75\left(10^{3}\right) \frac{\pi}{2}\left(170^{4}-130^{4}\right)}=0.2086 \mathrm{rad}=11.9^{\circ}=12^{\circ}
$$

9. A shaft delivers a maximum power of 2000 kW and causes the shaft to rotate at 1200 rpm . The outer diameter of the shaft is 200 mm and Inner diameter of the shaft is 180 mm .
1) Determine the internal torque (T) on the shaft.

$$
\begin{aligned}
& P=\frac{2 \pi n T}{60 \times 1000}=\frac{2 \pi n T}{60000}, \quad 2000 \mathrm{kw}=\frac{2 \pi(1200 \mathrm{rpm}) T}{60000}, \\
& T=15.92 \mathrm{kN}-m=15.92\left(10^{6}\right) N-m m
\end{aligned}
$$

ANS: $\mathrm{T}=15.9 \mathrm{kN}-\mathrm{m}$
2) Determine the maximum shear stress $\left(\tau_{\max }\right)$ developed in the shaft.

$$
\tau_{\max }=\frac{T c}{J}=\frac{15.92\left(10^{6}\right) 100}{\frac{\pi}{2}\left(100^{4}-90^{4}\right)}=29.47 M P a
$$

$$
\text { ANS: } \tau_{\max }=29.5 \mathrm{MPa}
$$

3) Determine the angle of twist(Φ) of the shaft when the length of the shaft is 20 m . ($\mathrm{G}=75 \mathrm{GPa}$)

$$
\phi=\frac{T L}{G J}=\frac{15.92\left(10^{6}\right) 20\left(10^{3}\right)}{75\left(10^{3}\right) \frac{\pi}{2}\left(100^{4}-90^{4}\right)}=0.0786 \mathrm{rad}=4.5^{\circ}
$$

ANS: $\Phi=$
0.0786 rad
10. The member shown in Fig. has a rectangular cross section.

1) Determine the resultant internal loadings(N, V, M) that products at the section C.

$$
\begin{array}{ll}
A_{x}-\frac{3}{5} \times 125+\frac{3}{5} \times 97.59=0 & \therefore A_{x}=16.45 \\
A_{y}-\frac{4}{5} \times 125+\frac{4}{5} \times 97.59=0 & \therefore A_{y}=21.93
\end{array}
$$

$$
\text { ANS: } \quad \mathrm{N}=-16.45 \mathrm{kN}, \quad \mathrm{~V}=21.93 \mathrm{kN}, \quad \mathrm{M}=32.89 \mathrm{kN}-\mathrm{m}
$$

2) Determine the state of $\operatorname{stress}\left(\sigma_{c}, \tau_{c}\right)$ that the loading products at point C.

Normal Force

$$
\sigma_{C}=\frac{N}{A}=\frac{-16.45 \mathrm{kN}}{(0.050 \mathrm{~m})(0.250 \mathrm{~m})}=-1.32 \mathrm{MPa}
$$

Shear Force

$\tau_{C}=0 \quad$ since point C is located at the top of the member.

Bending Moment

$$
\sigma_{C}=-\frac{M c}{I}=-\frac{(32.89 \mathrm{kN} \cdot \mathrm{~m})(0.125 \mathrm{~m})}{\left[1 / 12(0.050 \mathrm{~m})(0.250 \mathrm{~m})^{3}\right]}=-63.15 \mathrm{MPa}
$$

Superposition.

$$
\sigma_{C}=1.32 \mathrm{MPa}+63.15 \mathrm{MPa}=64.5 \mathrm{MPa}
$$

11. The state of plane stress at a point is represented by the element as shown.
1) Determine the state of $\operatorname{stress}\left(\sigma_{x^{\prime}}, \sigma_{y^{\prime}}, \tau_{x^{\prime} y^{\prime}}\right)$ at the point on another element oriented 30° clockwise from the position shown.

$$
\begin{aligned}
\sigma_{x^{\prime}} & =\frac{\sigma_{x}+\sigma_{y}}{2}+\frac{\sigma_{x}-\sigma_{y}}{2} \cos 2 \theta+\tau_{x y} \sin 2 \theta \\
& =\frac{-12-8}{2}+\frac{-12+8}{2} \cos 2\left(-30^{\circ}\right)+4 \sin 2\left(-30^{\circ}\right) \\
& =-14.46 M P a \\
\sigma_{y^{\prime}} & =\frac{-12-8}{2}-\frac{-12+8}{2} \cos 2\left(-30^{\circ}\right)-4 \sin 2\left(-30^{\circ}\right) \\
& =-5.54 M P a \\
\tau_{x^{\prime} y^{\prime}} & =-\frac{\sigma_{x}-\sigma_{y}}{2} \sin 2 \theta+\tau_{x y} \cos 2 \theta \\
& =-\frac{-12+8}{2} \sin 2\left(-30^{\circ}\right)+4 \cos 2\left(-30^{\circ}\right) \\
& =0.27 M P a
\end{aligned}
$$

$$
\text { ANS: } \underline{\sigma}_{x^{\prime}}=-14.46 \mathrm{MPa}, \quad \sigma_{y^{\prime}}=-5.54 \mathrm{MPa}, \quad \tau_{x^{\prime} y^{\prime}}=0.27 \mathrm{MPa}
$$

2) Determine the principal $\operatorname{stresses}\left(\sigma_{1}, \sigma_{2}\right)$ and the orientation $\left(\theta_{\rho 1}, \theta_{\rho 2}\right)$ of the element at the point.

$$
\begin{aligned}
& \sigma_{\text {avg }}=\frac{\sigma_{x}+\sigma_{y}}{2}=\frac{-12-8}{2}=-10 \mathrm{MPa}, \quad R=\sqrt{2^{2}+4^{2}}=4.47 \\
& \sigma_{1}=\sigma_{\text {avg }}+R=-10+4.47=-5.53 \mathrm{MPa} \\
& \sigma_{2}=\sigma_{\text {avg }}-R=-10-4.47=-14.47 \mathrm{MPa} \\
& \tan 2 \theta_{p}=\frac{2 \tau_{x y}}{\sigma_{x}-\sigma_{y}}=\frac{2(4)}{-12+8}=-2, \quad 2 \theta_{p}=-63.4^{\circ}, \quad \theta_{p 2}=-31.7^{\circ}, \quad \theta_{p 1}=-31.7^{\circ}+90^{\circ}=58.3^{\circ}
\end{aligned}
$$

$$
\text { ANS: } \underline{\sigma}_{1}=-5.53 \mathrm{MPa}, \quad \sigma_{2}=-14.47 \mathrm{MPa}, \quad \theta_{01}=58.3^{\circ}, \quad \theta_{02}=-31.7^{\circ}
$$

3) Draw Mohr's circle for the state of stress at the point and determine the absolute maximum shear stress($\tau_{\text {max-abs }}$) developed at the point.

12. A beam($\mathrm{E}=200 \mathrm{GPa}$, Cross-section is as shown.) is subjected to the load as shown. Where $\mathrm{w}_{0}=3.6 \mathrm{kN} / \mathrm{m}, \mathrm{L}=9 \mathrm{~m}$.

1) Draw the shear and moment diagram of the beam.
Indicate the absolute maximum shear force $\left(V_{\max }\right)$ and the maximum bending moment ($M_{\max }$) at the diagram.

ANS:

$$
\begin{aligned}
& A_{y}=B_{y}=\frac{w_{0} L}{4}=8.1 k N \\
& V_{\max }=-B_{y}=-\frac{w_{0} L}{4}=-8.1 \mathrm{kN} \\
& V=\frac{w_{0} L}{4}-\frac{w_{0} x^{2}}{2 L}=0 \quad \therefore x=0.707 L \\
& M_{\max }=\frac{w_{0} L}{4}\left(0.707 L-\frac{L}{3}\right)-\frac{w_{0}}{6 L}(0.707 L)^{3} \\
& \quad=0.0345 w_{0} L^{2}=10.06 \mathrm{kNm}
\end{aligned}
$$

2) The crosses section of the beam is shown as fig. Determine the moment of inertia ($\mathrm{I}_{\underline{\underline{x}}}$) and the maximum first moment $\left(\mathrm{Q}_{\max }\right)$ of the crosssectional area about the centroidal x-axis.

Section Properties :

$$
\begin{aligned}
& I_{x}=\Sigma\left(\overline{I_{x^{\prime}}}+A d_{y}^{2}\right) \\
&=\left[\frac{1}{12}(30 \mathrm{~mm})(150 \mathrm{~mm})^{3}+(30 \mathrm{~mm})(150 \mathrm{~mm})(120 \mathrm{~mm}-75 \mathrm{~mm})^{2}\right] \\
&+\left[\frac{1}{12}(150 \mathrm{~mm})(30 \mathrm{~mm})^{3}+(150 \mathrm{~mm})(30 \mathrm{~mm})(60 \mathrm{~mm}-15 \mathrm{~mm})^{2}\right] \\
&=27.0\left(10^{6}\right) \mathrm{mm}^{4} \\
& Q_{\max }=\overline{y^{\prime}} A^{\prime}=45(150)(30)+15(30)(30)=216\left(10^{3}\right) \mathrm{mm}^{3} \\
& O R \\
& Q_{\max }=\overline{y^{\prime}} A^{\prime}=60(30)(120)=216\left(10^{3}\right) \mathrm{mm}^{3}
\end{aligned}
$$

ANS: $\mathrm{I}_{\mathrm{x}}=27.0\left(10^{6}\right) \mathrm{mm}^{4}, \quad \mathrm{Q}_{\max }=216\left(10^{3}\right) \mathrm{mm}^{3}$
3) Determine the maximum bending stress ($\sigma_{\max }$) and the maximum shear stress ($\tau_{\max }$) in the beam.

$$
\begin{aligned}
\sigma_{\max } & =-\frac{M c}{I}=-\frac{\left(10.06\left(10^{6}\right) \mathrm{N} \cdot \mathrm{~mm}\right)(-120 \mathrm{~mm})}{27\left(10^{6}\right) \mathrm{mm}^{4}}=44.7 \mathrm{MPa} \\
\tau_{\max } & =\frac{V Q_{\max }}{I t}=-\frac{8.1\left(10^{3}\right) N(216)\left(10^{3}\right) \mathrm{mm}^{3}}{27\left(10^{6}\right) \mathrm{mm}^{4}(30) \mathrm{mm}}=-2.16 \mathrm{MPa}
\end{aligned}
$$

13. The state of plane stress at a point is represented by the element as shown.
1) Determine the state of $\operatorname{stress}\left(\sigma_{x^{\prime}}, \sigma_{y^{\prime}}, \tau_{x y}\right)$ at the point on another element oriented 45° clockwise from the position shown.

$$
\begin{aligned}
\sigma_{x^{\prime}} & =\frac{\sigma_{x}+\sigma_{y}}{2}+\frac{\sigma_{x}-\sigma_{y}}{2} \cos 2 \theta+\tau_{x y} \sin 2 \theta \\
& =\frac{200+120}{2}+\frac{200-120}{2} \cos 2\left(-45^{\circ}\right)-50 \sin 2\left(-45^{\circ}\right) \\
& =210 M P a \\
\sigma_{y^{\prime}} & =\frac{200+120}{2}-\frac{200-120}{2} \cos 2\left(-45^{\circ}\right)+50 \sin 2\left(-45^{\circ}\right) \\
& =110 \mathrm{MPa} \\
\tau_{x^{\prime} y^{\prime}} & =-\frac{\sigma_{x}-\sigma_{y}}{2} \sin 2 \theta+\tau_{x y} \cos 2 \theta \\
& =-\frac{200-120}{2} \sin 2\left(-45^{\circ}\right)-50 \cos 2\left(-45^{\circ}\right) \\
& =40 \mathrm{MPa}
\end{aligned}
$$

ANS: $\underline{\sigma}_{x^{\prime}}=210 \mathrm{MPa}, \quad \sigma_{y^{\prime}}=110 \mathrm{MPa}, \quad \tau_{x^{\prime} y^{\prime}}=40 \mathrm{MPa}$
2) Determine the principal $\operatorname{stresses}\left(\sigma_{1}, \sigma_{2}\right)$ and the orientation $\left(\theta_{p 1}, \theta_{p 2}\right)$ of the element at the point.

$$
\begin{aligned}
& \sigma_{\text {avg }}=\frac{\sigma_{x}+\sigma_{y}}{2}=\frac{200+120}{2}=160 \mathrm{MPa}, \quad R=\sqrt{40^{2}+50^{2}}=64.03 \\
& \sigma_{1}=\sigma_{\text {avg }}+R=160+64.03=224.03 \mathrm{MPa} \\
& \sigma_{2}=\sigma_{\text {avg }}-R=160-64.03=95.97 \mathrm{MPa} \\
& \tan 2 \theta_{p}=\frac{2 \tau_{x y}}{\sigma_{x}-\sigma_{y}}=\frac{-2(50)}{200-120}=-1.25, \quad 2 \theta_{p}=-51.34^{\circ}, \quad \theta_{p 1}=-25.67^{\circ}, \quad \theta_{p 2}=-25.67^{\circ}+90^{\circ}=64.33^{\circ}
\end{aligned}
$$

$$
\text { ANS: } \underline{\sigma}_{1}=224 \mathrm{MPa}, \quad \sigma_{2}=96 \mathrm{MPa}, \quad \theta_{p 1}=-25.7^{\circ}, \quad \theta_{p 2}=64.3^{\circ}
$$

3) Draw Mohr's circle for the state of stress at the point and determine the absolute maximum shear stress $\left(\tau_{\text {max-abs }}\right)$ developed at the point.

T(Mpa)

$\tau_{\text {(MPa) }}$

$$
\tau_{\max }=\frac{\sigma_{1}-\sigma_{3}}{2}=\frac{\sigma_{\max }-\sigma_{\min }}{2}=\frac{224-0}{2}=112 \mathrm{MPa}
$$

